New Hydric Soil Field Indicators for Michigan

Michigan Wetlands Association 2013 Winter Conference February 11, 2013 James Sallee, CPSS

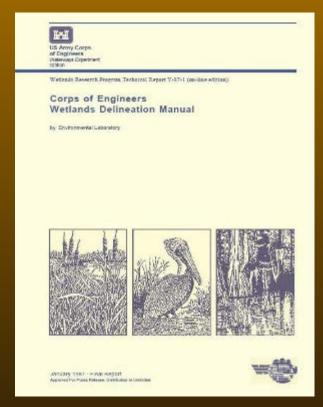
Regional Supplements Bring Wetland Delineation Up to the State-of-the-Science

Wetlands Regulatory Assistance Program

Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region

(Version 2.0)

ERDC/EL TR-12-1


Environmental Laboratory

U.S. Army Corps of Engineers

January 2012

pproved for public release; distribution is unlimited.

ERDC/ELTR-10-16

Environmental Laboratory

US Army Corps of Engineers_® Engineer Research and Development Center

Wetlands Regulatory Assistance Program

Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0)


U.S. Army Corps of Engineers

August 2010

Approved for public release; distribution is unlimited.

Regional Supplements (10)

Michigan Land Resource Regions K, L, M

Version 7.0, 2010

Field Indicators of
Hydric Soils in the
United States
http://soils.usda.gov/use
/hydric/


In cooperation with the National Technical Committee for Hydric Soils

Natural Resources Conservation Service

Field Indicators of Hydric Soils in the United States

A Guide for Identifying and Delineating Hydric Soils, Version 7.0, 2010

Most Recent Information on Changes to Field Indicators

http://soils.usda.gov/use/hydric/ ntchs/minutes/minutes.html

Research Project Timeline

- 2008 Study design and collaboration
- 2009 1st Year of Field Research
- 2009 Interim Version of NC/NE Regional Supplement Published
- 2010 2nd Year of Field Research
- 2011 Data Analysis and Publication of Research
- 2012 Version 2.0 NC/NE Regional Supplement Published with change to Chapter 5
- 2012 National Technical Committee site review and approval of new Field Indicators

Field Research

Field Research

Soil Science Society of America Journal Volume 75: Number 6 November-December 2011

Investigating Problematic Hydric Soils using Hydrology, IRIS Tubes, Chemistry, and the Hydric Soils Technical Standard

lacob F. Berkowitz*

Wetlands and Coastal Ecology Branch Environmental Lab. Engineer Research and Development Center U.S. Army Corps of Engineers CEERD-EE-W 3909 Halls Ferry Rd. Vicksburg, MS 39180-6199

James Barrett Sallee

Water Resources Division Michigan Dep. of Environmental Quality 301 East Louis Click Hwy. Jackson, MI 49201 Resource professionals rely on soil morphology to make determinations of hydric soil status. Characteristic morphologies led to the development of field indicators for hydric soil identification and delineation. This study examined soils not meeting approved field indicators. These included high-chroma sandy soils, dark sandy soils, and marl soils located in Michigan. All soils displayed high water tables within 25 cm (10 in) of the surface for a minimum of 14 consecutive days. Indicator of reduction in soils (IRIS) tube data confirmed reducing conditions in wetland sites, with average Fe removal of 74%; only 4.8% removal was observed in uplands. Ten of 11 soils examined met the hydric soil technical standard (HSTS). Results indicate that two additional field indicators (S7–Dark surface and F10–Marl) should be approved in the region. Soil chemical data examined the development of hydric soil morphologies, Laboratory incubations monitored the formation of low-chroma colors with an artificial C substrate in high-chroma sands. This work expands the range of accepted field indicators and provides a case study for applying the HSTS to problematic soil situations.

Abbreviations: DAREM, direct antecedent rainfall evaluation method; HSTS, hydric soils technical standard; IRIS, indicator of reduction in soils; NTCHS, National Technical Committee for Hydric Soils; TC, total carbon; TOC, total organic carbon.

As one of the three factors associated with the delineation of wetlands, the identification of hydric soils affects resource management and land-use development (Environmental Laboratory, 1987; Moorhead, 1990). In most cases, wetland delineations and management decisions require on-site determinations of hydric soils based on direct observations in the field (Hurt and Brown, 1995; National Research Council, 1995). As a result, wetland professionals developed hydric soil indicators (field indicators) (Hurt et al., 1998; Vasilas et al., 2010). Field indicators based on morphological features reflect conditions associated with prolonged and repeated occurrences of reduced soil conditions within the upper portion of the soil profile (Mausbach, 1994; Mausbach and Parker, 2001). Common hydric soil morphologies include organic matter accumulation, redoximorphic features, and development of low-chroma colors through the reduction and translocation of solid-phase Fe and Mn species (Vepraskas, 1992).

Northcentral and Northeast Regional Supplement, (Version 2.0) Chapter 5, Difficult Wetland Situations in the Northcentral and Northeast Region, Page 130 (January 2012)

In addition, along the shorelines of the Great Lakes within LRRs L and K, some wetlands lack hydric soil indicators due to the presence of high-chroma sands (often a chroma of 3 or more). These high-chroma, sandy soils occur at the landward edge of coastal marshes, in interdunal wetlands, and in dune-and-swale complexes. They do not meet a hydric soil indicator due to matrix chromas greater than 2. These soils often exhibit redox concentrations as pore linings and/or soft masses within 12 in. (30 cm) of the surface. In adjacent upland areas, redox concentrations are absent or are only observed at depth. It may be helpful to involve a soil scientist or wetland scientist familiar with these problem soils.

New Hydric Soil Field Indicators for Michigan

- S7. Dark Surface (test indicator)
- F10. Marl (only Florida)
- S11. High Chroma Sands (brand new)

S7. Dark Surface. For use in LRRs K, L, M, N, P, S, T, U, V, and Z. A layer 10 cm (4inches) thick, starting within the upper 15 cm (6 inches) of the soil surface, with a matrix value of 3 or less and chroma of 1 or less. At least 70 percent of the soil particles must be masked with organic material, viewed through a 10x or 15x hand lens. Observed without a hand lens, the particles appear to be close to 100 percent masked. The matrix color of the layer directly below the dark layer must have the same colors of those described above or any color that has chroma of 2 or less.

F.10. Marl. For use in LRRs K, L, and U. A layer of marl with value of 5 or more and starting within 10 cm (4 inches) of the soil surface.

S11. High Chroma Sands. For use along shorelines and near shore regions of the Great Lakes in LRRs K and L. In coastal zones and dune-and-swale complexes, a layer 2 inches (5 cm) or more thick starting within 4 inches (10 cm) of the surface with chroma 4 or less and 2 percent or more distinct or prominent redox concentrations.

User Notes: Along the shorelines of the Great Lakes within LRRs L and K, some wetlands exhibit the presence of high chroma sands (often a chroma of 3 or more). These high-chroma, sandy soils occur at the landward edge of coastal marshes, in interdunal landscape positions, and dune-and-swale complexes. These soils exhibit redox concentrations as pore linings and/or soft masses starting within 4 in. (10 cm) of the surface. In adjacent upland areas, redox concentrations are absent or are only observed below 6 in. (15cm). It may be helpful to involve a soil scientist or wetland scientist familiar with these soils.

Data Sheet – Page 3, Soil

S7. Dark Surface – listed as indicator for problematic hydric soils

F10. Marl – not listed as indicator

S11. High Chroma Sandsnot listed as indicator

Type: C=Concentration, 1	erix still 56	Color (moist)	x Features 1 Type 1 L	Loc ² Testure	Remarks	
Type: C=Concentration, I						
					-	
					-3-	
					-3	
				- 20.07		
				25.07	W-	
				333		
					- 0.0	
		1 20		1200		
		·				
			3 3 3 3 3 3		- .3 .	
	7					
	-Depletion, RM	-Reduced Matrix, MS	-Masked Sand Grains	s. Locati	ion: PL-Pore Lining, M-Matrix.	
Hydrio Soil Indicators:					ors for Problematio Hydrio Solis":	
Histosol (A1)		Polyvalue Belov	Surface (88) (LRR R,	201	Muck (A10) (LRR K, L, MLRA 149B)	
Histic Epipedon (A2)		MLRA 149B)		Coe	st Prairie Redox (A16) (LRR K, L, R)	
Black Histic (A3)		Thin Dark Surfa	ce (89) (LRR R, MLRA	A 149B) 5 cm	Mucky Peat or Peat (S3) (LRR K, L, R)	
Hydrogen Suffide (A4)		Loamy Mucky N	fineral (F1) (LRR K, L)	Dark	k Surface (87) (LRR K, L, M)	
Stratified Layers (AS)		Loamy Gleyed Matrix (F2)		Poly	value Below Surface (SS) (LRR K, L)	
Depleted Below Dark Surface (A11)		Depleted Matrix (F3)		Thin	Dark Surface (89) (LRR K, L)	
Thick Dark Surface (A12)		Redox Dark Surface (F6)		Iron	-Manganese Masses (F12) (LRR K, L, R	
Sandy Mucky Mineral	81)	Depleted Dark Surface (F7)			tmont Floodplain Soils (F19) (MLRA 149	
Sandy Gleyed Matrix	84)	Redox Depressions (F8)		Mes	Mesic Spodic (TA6) (MLRA 144A, 146, 1496	
Sandy Redox (S5)				The state of the s	Parent Material (F21)	
Stripped Matrix (86)					y Shallow Dark Surface (TF12)	
Dark Surface (87) (LR	R R, MLRA 148	B)		Othe	er (Explain in Remarks)	
indicators of hydrophytic	analytica and u	all and budgelons on a	the content unless di	ch shad or conhiston	altre	
estrictive Layer (If obse		esand nyarology mus	be present, unless us	auroeu or prociente	E.C.	
	wed).			- 1		
Туре:						
Depth (inches):		3		Hydrio Sc	oll Present? Yes No	

Summary

- Three new hydric soil indicators are approved for use in Michigan
- Indicators are not on official forms yet but will be when forms are updated
- New indicators improve the accuracy of hydric soil identification and wetland delineation in Michigan's diverse wetlands

