HOLLAND ENGINEERING

HollandEngineering.com

Assessing macroinvertebrates and habitat to develop restoration baselines and recommendations

> Larissa Herrera Senior Biologist

Outline

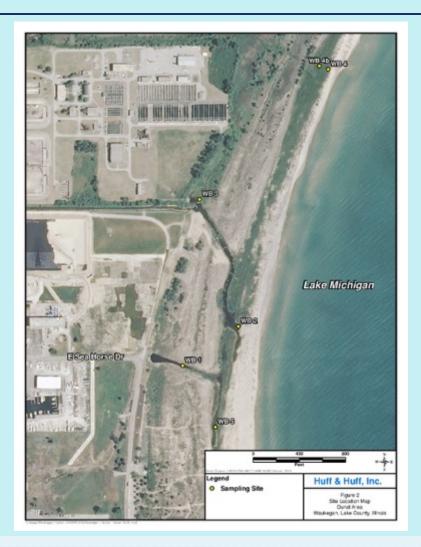
- Purpose and Need
- Site Location
- Macroinvertebrates
- Goals
 - Assess Bowen Park Glen Flora Tributary
 - \circ Assess Dunal Area
- Information Obtained
 - $\,\circ\,$ Baseline physical and biological data
 - $\circ\,$ MIBI and MBI Scores

Purpose

- Macroinvertebrates are used to assess water quality
- WHCAG wanted to have a baseline inventory of macroinvertebrate data
 - Assess Glen Flora tributary and Dune/Swale complex
 - $\,\circ\,$ Provide recommendations based on data

Site Location Map – Bowen Park

Stream Sites


- Characteristics
 - $\circ~$ Cobble, gravel, sand substrate
 - Riffles

Site Location Map – Dunal Area

Dune Sites

- Characteristics
 - Sandy-silty substrate
 - Slow, stagnant water
 - o Mostly common reed

Qualitative Habitat Index (QHEI)

- QHEI scores calculated using the Ohio EPA methodology
- The swale sites are not really poor quality, they are a entirely different system and do not have many stream characteristics
- WB-5 was added in the second year

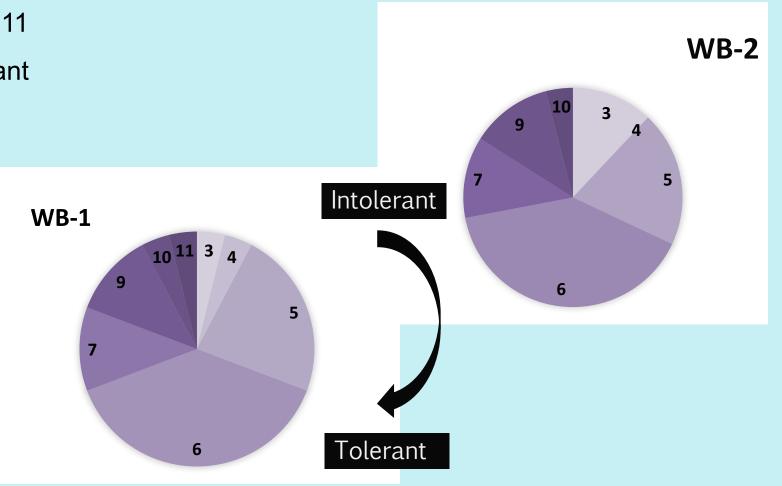
Narrative Rating	QHEI Range				
U U	Headwaters	Larger Streams			
Excellent	≥70	≥75			
Good	55 to 69	60 to 74			
Fair	43 to 54	45 to 59			
Poor	30 to 42	30 to 44			
Very Poor	<30	<30			

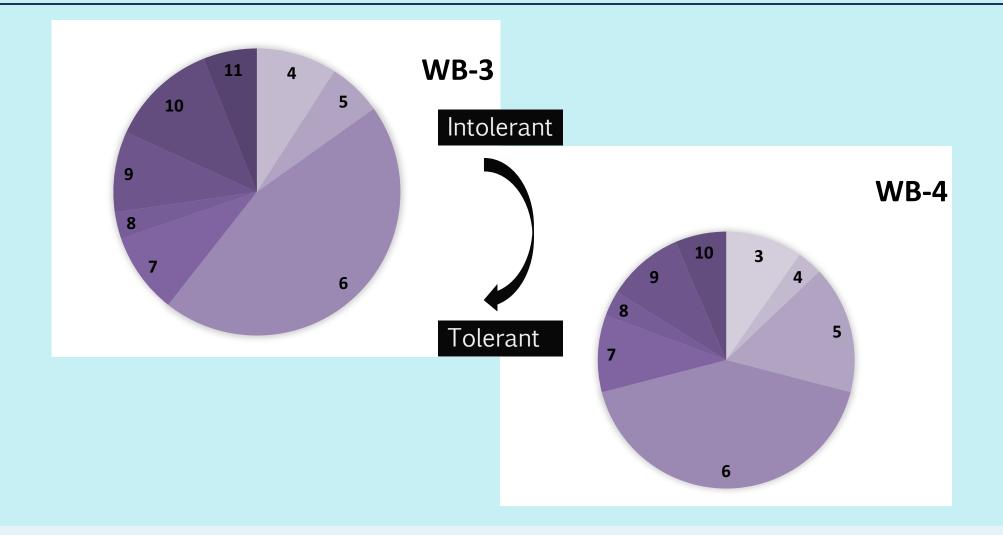
Site	QHEI Score	Narrative Rating
WB-1	31	Poor
WB-2	34	Poor
WB-3	41	Poor
WB-4	40	Poor
WB-5	42	Poor
WR-1	73.5	Excellent
WR-2	71	Excellent
WR-3	43	Fair

Methodology

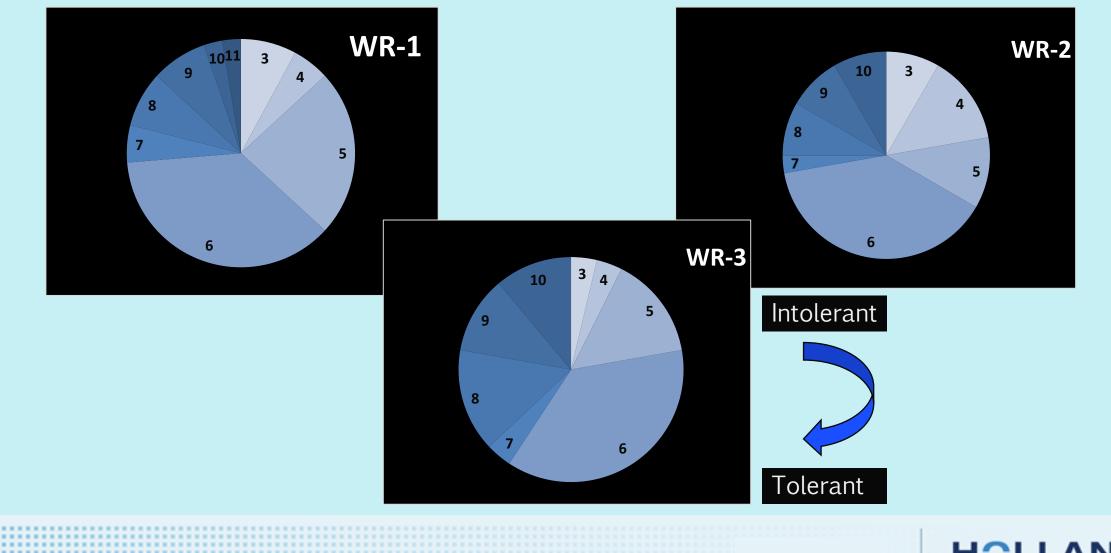
- IEPA Methodology
 - Used to assess streams and rivers (riffle/run sequence)
 - \circ $\,$ We used to assess swales as well $\,$
 - No current state specific non-flowing water methodology
- Dnet
 - \circ 20 jabs
 - \circ Take jabs in different habitat types
 - o Effort allocated based on percentages of habitat type
- Samples identified in the laboratory

MBI

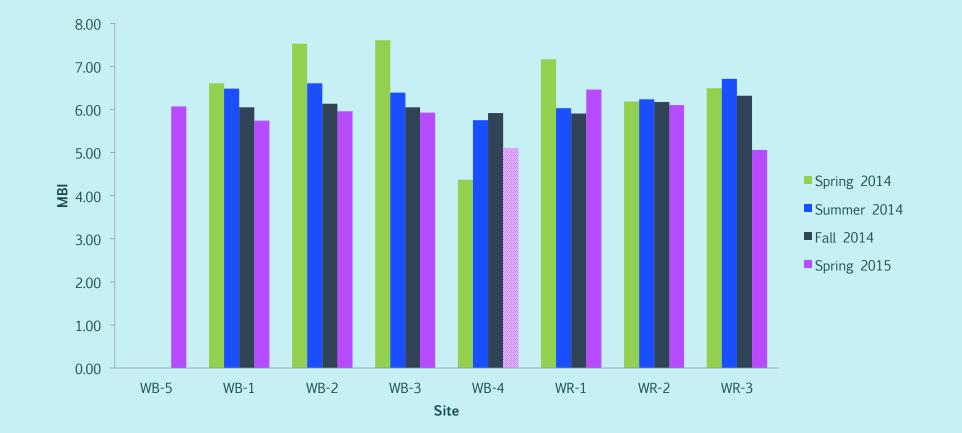

- Macroinvertebrate Biotic Index
- Calculated using numerical rating of each taxa
- Used throughout U.S. for stream health
 evaluations
- Illinois EPA assigns values for Illinois
- Each taxa has a value from 0 to 11 with 0 being most sensitive and 11 being least
- A lower MBI score is better


Beach Sites – IEPA Values

- IEPA Values range from 0 to 11
- 0 to 3 are considered intolerant



Beach Sites – IEPA Values

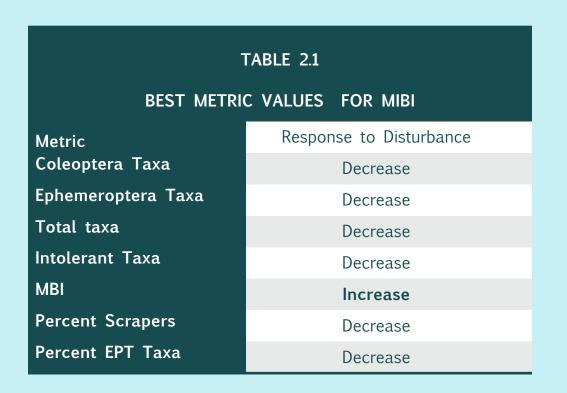


Bowen Park Sites – IEPA Values

MBI Results

MBI Score by Site and Date

MIBI

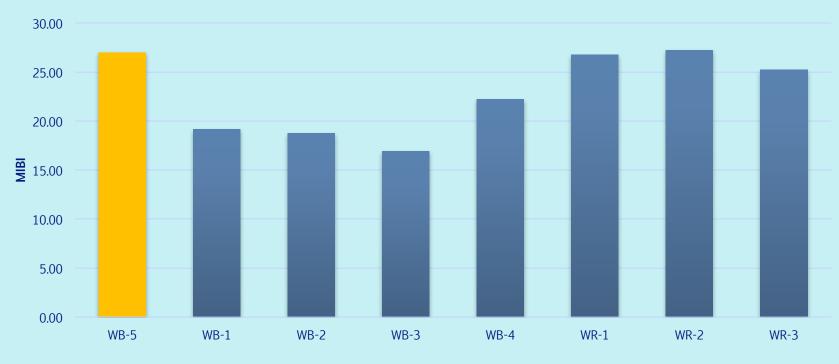

- Macroinvertebrate Index of Biotic Integrity
- Illinois Environmental Protection Agency (IEPA)
- Multi-metric evaluation
- Preferred in Illinois due to resolution of detail
- A higher MIBI score is better

Lower Boundary Score	Upper Boundary Score	Comparison to Reference Conditions	Narrative description	
73	100	> 75 th Percentile	Exceptional	
41.8	72.9	> 10 th Percentile	Good	
20.9	41.7	Bisects 10 th percentile (Upper)	Fair	
0	20.8	Bisects 10 th Percentile (lower)	Poor	

MIBI

- Total Number of Taxa
- Number of Coleoptera (Beetle) Taxa
- Number of Ephemeroptera (Mayfly) Taxa
- Number of Intolerant (as designated from IEPA list) Taxa
- Macroinvertebrate Biotic Index
- Percent individuals as Scrapers (as designated from IEPA list)
- Percent individuals as Ephemeroptera, Plecoptera (stonefly) or Trichoptera (caddisfly)

MIBI Results


FIGURE 3.1 MIBI Score by Site and Date 35.00 30.00 25.00 20.00 Spring 2014 MIBI Summer 2014 15.00 ■Fall 2014 Spring 2015 10.00 5.00 0.00 WB-5 WB-1 WB-2 WB-3 WB-4 WR-1 WR-2 WR-3

Site

HOLLAND

MIBI Score by Site for Spring 2015

Spring 2015

Site

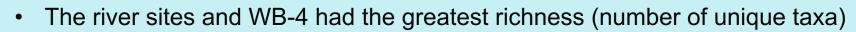
MIBI

MIBI								
Site	Spring 2014	Summer 2014	Fall 2014	Spring 2015	Average	Cumulative	MIBI Narrative Description	
WB-1	28.55	30.12	23.89	21.90	26.12	36.52	Fair	
WB-2	26.49	30.15	22.93	18.85	24.61	32.77	Fair	
WB-3	29.72	19.61	21.35	16.85	21.88	36.52	Fair	
WB-4	26.06	27.96	30.76	21.12*	26.48	33.60	Fair	
WB-5				26.99	26.99	26.99	Fair	
WR-1	23.44	21.42	22.29	26.75	23.48	31.96	Fair	
WR-2	19.60	17.23	26.19	27.21	22.56	36.65	Fair	
BWReBotes *indicates WE		arrati 27,445 cripti	on 18.39	25.21	24.51	33.70	Fair	

Lower Boun Score	ndary Upper Bounda Score	ary Comparison to Reference Conditions	Narrative description
73	100	> 75 th Percentile	Exceptional
41.8	72.9	> 10 th Percentile	Good
20.9	41.7	Bisects 10 th percentile (Upper)	Fair
0	20.8	Bisects 10 th Percentile (lower)	Poor

Other Metrics

Site	Number of Unique Taxa	Number of individuals	Number of Coleoptera	Number of Ephemeroptera	Number of intolerant taxa	Percent lentic*	Percent lotic*	Lotic and Lentic*
WB-1	17	336	0	1	2	12.6	0	49.2
WB-2	15	230	0	1	1	5.4	0	65.5
WB-3	23	348	1	2	0	5.5	0	75.1
WB-4	23	364	1	0	1	4.9	0	34.7
WB-5	11	87	0	2	0	7.2	1.0	75.3
WR-1	28	574	2	2	1	2.0	10.5	30.3
WR-2	27	890	2	3	3	0.7	3.8	31.4
WR-3	22	706	0	2	2	0.7	0.7	65.1


*Lentic and lotic percentages do not add up to 100% because all taxa have not been categorized

All sites from 2014 gained unique taxa when sampled in the spring 2015

Conclusions

- Sites had similar MBI and MIBI scores.
- Lentic (still waters) and lotic (flowing waters) taxa indicate flow regime
 - Only one site is likely to be flowing year round
 (WR-1 was the only site with significant lotic taxa)
 - Rest of sites are mostly taxa without strong flow preferences

- The river sites had the greatest abundance (number of individuals)
- None of the sites had more than 1-2 intolerant taxa (IEPA value of less than 3)

Conclusions

• Swales

- o Generally less stable habitats
- The sites all scored lower than expected
- Likely due to using a stream indicator for different system
- However, metric still shows WB-5 as being the best site

Vegetation

- WB-2 lost most of the vegetation from 2014 due to storms
- Very low numbers of organisms present in 2015
- Very little in-stream habitat
- $\circ~$ Less cover leads to higher predation
- $\circ~$ Less cover means very few food sources

Recommendations

- Swales
 - High spring MIBI scores
 - Two potential reasons
 - Lake Michigan water
 - Lack of predation
 - Large scud community which are considered intolerant by IEPA
 - WB-4 had 100 scuds in the spring sample
 - $\circ~$ Low fall scores
 - o Low overall macroinvertebrate density
 - Almost all predatory insects in summer/fall
 - What are they eating?
 - Need to increase food base to increase overall abundances
 - Very dense filamentous algae community

Vegetation

- Native plugs
- o Already burning invasive plants
- Need to remove dead Phragmites from swales
- Nutrients
- Habitat
 - o Driftwood common in great lakes
 - Redistribute or add rootwads (more complex habitat)
 - Understand seiches, wave action might move or remove it

Recommendations

- Glen Flora Tributary
 - Good riffles and substrate at 2/3 sites
 - Scuds (every sites) and intolerant dragonfly (only 1 at WR-2 fall sample)
 - Water levels decrease drastically in late summer

Bank Stabilization

- High sediment loads from steep, unvegetated banks
- Might be natural part of ravine system

• Flow

- Maybe the flow regime is similar to historical flow regime
- Hydrological study (gauges) would confirm
- o Less flow in late summer/fall, less riffles

Deeper Pools

• Provide refuge during summer

Woody Debris

- Some sites with good amounts of woody debris already
- o Don't want dams, strategically place

http://www.marylandinsects.com/images/Plathe mis_lydia_nymph_Farm_Pond_West_Friendsh ip_Park_26-Apr-14.jpg

Questions?

