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Background:

• Master's student at CMU studying contaminant 
accumulation in tissue in invasive mussels.

• 5 years with the Institute of Great Lakes Research 
(IGLR).

• Coastal Wetland Monitoring Project (CWMP).

• Introduction to my thesis work. 

Photo courtesy of: Aaron Parsons



The Issue: wetlands

• Our Great Lakes coastal wetlands 
are facing increased 
anthropogenic pressures.1

• Climate change2

• Urban development3,4

• Pollution5
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PFAS:

• One particular pollutant: per- and polyfluoroalkyl substances (PFAS).
• PFAS are an organic contaminant prevalent in the media.3



PFAS:
• PFAS are widespread, nonvolatile organic carbon-chain molecules that 

are mobilized by water and persist indefinitely in the environment.5,6
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PFOS: 
Perfluorooctane-
sulfonate

PFOA: 
Perflurooctanoic
acid



PFAS:
• PFAS sorb to sediments.15

• PFAS can be mobilized by 
runoff.16,17

• PFAS can be suspended in 
the air as dust.18

• One study estimates that 
there are greater than 200 
tonnes of PFAS in Great 
Lakes sediments.19
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PFAS:

• USEPA states:
• PFAS can affect the immune system.7

• PFOS may be linked thyroid hormone disruption.7

• PFOA may be linked to cancer.7

• Accumulate in tissues.8

• Half lives vary from 2 weeks to 9 years.9,10
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Study objective:

• Use PFAS in dreissenid mussels 
as an indicator of ecosystem 
stress.

• Compare dreissenid tissue PFAS 
conc. to two measures of 
oxidative stress.
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Methods: study organisms

Dreissena polymorpha – the zebra 
mussel

Dreissena rostriformis bugensis – the  
quagga mussel 
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Methods: site selection

• 20 sites

• Sites maintained a hydrologic 
connection to a known 
wetland polygon.11

• Sites were selected from the 
2019 list of wetlands to be 
sampled, provided by the 
GLCWMP.12
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Methods: PFAS sample collection

• At least 2 g of entire 
mussels (6 g total) were 
collected from 3 reps. 

• Dreissenids were massed in 
field to ensure the 
minimum sample size ≈ 2 
grams of tissue (excluding 
the shell, which accounts 
for approx. 65% of total 
wet mass). 
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Methods: PFAS 
sample analysis

• Mussels were placed in pre-
washed containers and bags.

• 13 PFAS congeners will be 
quantified using LC-MS/MS.13
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Methods: site chemistry
• Three replicates of surface water chemistry data 

were collected using a YSI multiparameter sonde.12

• Temperature (⁰C)
• Dissolved Oxygen (mg/L, % saturation)
• pH
• Total Dissolved Solids (g L-1)
• Specific Conductivity (µS cm-1)
• Turbidity (NTU)
• Oxidation-Reduction potential (mV)
• In situ Chlorophyll a (µg/L)

• A composite water sample was collected and will be 
analyzed for the following:

• Total N, P
• NH4

• NO3

• SRP
• Chloride ions
• Chlorophyll a
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Study objective:

• Use PFAS in dreissenid mussels 
as an indicator of ecosystem 
stress.

• Compare dreissenid tissue PFAS 
conc. to two measures of 
oxidative stress.
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Methods: oxidative stress sample collection

• An additional 12 mussels (4 per 
rep) were collected from each 
site and flash frozen on dry ice in 
the field. 

• Mussels are currently stored in a 
-80 ⁰C freezer awaiting analysis. 
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Methods: oxidative stress sample processing

• Oxidative stress assays for superoxide dismutase (SOD) and DNA 
damage will be performed on mussels collected.14
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Subsequent analyses:

• Principal Components Analysis (PCA) of sites based on water quality 
and site average PFAS concentrations.

• Correlations or groupings between principal components for WQ and 
site average PFAS values.

• Correlation between site average oxidative stress measures and site 
average PFAS concentrations.
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Goal:

• Relate tissue PFAS 
concentrations and multiple 
measures of wetland site 
stress. 
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