Created wetlands support similar communities of low conservation value as established wetlands in Michigan

Adam Austin (MS) PhD Candidate | Biological Sciences Western Michigan University

Background	Methods	Results	Future Directions

What the statue means:

Restored – upland converted to wetland in a location where a wetland once existed in decades or centuries past

Created – upland converted to wetland in location where no evidence of prior wetland exists

What English speakers infer:

Restored – wetland is returned to its original condition

Created – wetland is brought into existence

Results	Future Directions
	Results

Thirty years later...

Best for broadest audience:

Restored – wetland is returned to its original condition

- Lack of historical data
- Few unimpacted reference wetlands
- * Likely untrue for both services and biotic community*

Created – wetland is brought into existence

Best for broadest audience:

Restored – wetland is returned to its original condition

- Lack of historical data
- Few unimpacted reference wetlands
- * Likely untrue for both services and biotic community*

Created – wetland is brought into existence

Wetland Habitat

Results

Future Directions

Methods

Background

40% of the world's species live or breed in wetlands

Background

Methods

Future Directions

Clean Water Act, Section 404 (1972)

- Prohibits dredging or placement of fill into 'waters of the United States'
- Permits issued if impacts are unavoidable
- Establishes framework for compensatory wetland mitigation

Michigan is one of only two states with 404 authority over their own wetlands

Created wetlands are often relatively isolated

Background	Methods	Results	Future Directions

Questions

- 1. Do created wetlands support aquatic communities of similar composition or value as established wetlands in Michigan?
- 2. Do aquatic communities in created wetlands become more similar to those of established wetlands across space and time?

Paired Sample Design

Created Wetlands

- All owned / managed by Michigan Department of Transportation (MDOT)
- 2-25 years since construction
- Native hydrophytes seeded, but no animals are deliberately introduced

Methods

Established Wetlands

- Nearest available wetland to each mitigation wetland
- No evidence of significant changes over 25 years of satellite imagery
- Not obviously artificial / disturbed

All pairs sampled on the same day from June-August, 2020

Vegetation

Background

- Three Transects; up to 15 one m² quadrats per transect
- Transects begin 10 m upland from water's edge
- Ends at open water, or once 15 quadrats have been thrown
- Coverage estimated for all species within, above, or below quadrat
- Identified using iNaturalist and Michigan Flora Online Key
- Calculated Floristic Quality Index (FQI) (USGS/USACE)

Methods

Background Methods Image: Additional intervention of the second interventinterventintervention of the second intervention of the s

Aquatic Macroinvertebrates

- Dip netting throughout pond (min. three sweeps) targeting different microhabitats
- Debris collected in bucket
- Sort debris for 30 person-minutes up to 150 individuals
- If 150 individuals not found, continue until next interval of 50
- Stored in ethanol, identified in the lab to genus or species with dichotomous keys
- Calculated Index of Biotic Integrity (IBI) (Burton et al. 2009)

Background

Methods

Results

Future Directions

<u>Vertebrates</u>

- Fish and herpetofauna
- Electrofishing until 10 minutes elapse without finding a new species (~45 minutes)
- Three seine net sweeps
- Light-baited funnel traps left overnight for >12 hours
- Random encounters (herpetofauna only)
- Identified to species and released

Vegetation Results

- 174 plant taxa (range:7-48, SD: 10.76)
- Most Common: Reed Canary Grass, Narrow-leaved Cattail, Willows
- Indicator Analysis

Results

• Rushes (*Juncus spp.*) associated with mitigation wetlands

Future Directions

 False nettle (Boehmeria cylindrica), Riverbank Grape (Vitis riparia), and Virginia Creeper (Parthenocissus cinquefolia) associated with established wetlands

Background	Methods			Results	Future Directions
Metric	Test	V/T-Stat	p-Value		
Vegetation					ALL ADDED NO
Observed Richnes	s Paired t-test	0.556	0.592	1220	
Estimated Richnes	ss (Chao1) Paired t-test	0.168	0.870	A set of the set of the	
Evenness (Pielou)	Wilcoxon	40	0.232		
Diversity (Shanno	n) Paired t-test	1.607	0.143	643 A 16	
Non-Native Cover	age Wilcoxon	13	0.160		Here and the second
Non-Native Richn	ess Paired t-test	-0.722	0.489	ALC: NO.	and and shares
Native FQI	Paired t-test	0.928	0.378	A STATE OF	and more and and
Non-Native FQI	Paired t-test	0.717	0.492	Contraction of the second	and the second
			1		

Pickerel Weed

Quillwort

Bullrush (Scirpus spp.)

Background	Methods	Results	Future Directions

Background Methods Results Future Direr	Background	Methods	Results	Future Direction:
---	------------	---------	---------	-------------------

Metric	Test	V/T-Stat	p-Value
Aquatic Macroinvertebrates			
Observed Richness	Wilcoxon	31	0.759
Estimated Richness (Chao1)	Paired t-test	-0.635	0.541
Evenness (Pielou)	Paired t-test	-0.628	0.546
Diversity (Shannon)	Paired t-test	-0.709	0.496
IBI	Paired t-test	-0.487	0.638

Background		Methods	Results		Futu	re Directions
	Metric		Test	V/T-Stat	p-Value	
	Fish					
		Observed Fish Richness	Wilcoxon	11	0.188	
		Estimated Fish Richness (Chao1)	Wilcoxon	12	0.232	
		Fish Evenness (Pielou)	Wilcoxon	27	0.652	
		Fish Diversity (Shannon)	Paired t-test	-0.681	0.515	

Herpetofauna Results

Future Directions

- Nine herpetofauna taxa (range: 0-6, SD: 1.38)
- Most Common: Green Frogs (*Lithobates clamitans*), Bullfrogs (*Lithobates catesbaeianus*), and spring peepers (*Pseudacris crucifer*)
- No indicator species

Results

Background	Meth	ods		Results		Future Directions
Metric		Test	V/T-Stat	p-Value		and the second
Herpetofau	na		•	•		The second second
Ob	oserved Richness	Wilcoxon	11	0.354	under	
Est	timated Richness (Chao1)	Wilcoxon	13	0.521		

 Northern Leopard Frog

Northern Water Snake

Background	Methods	Results	Future Directions
------------	---------	---------	-------------------

Conclusions

1. Do created wetlands support aquatic communities of similar composition or value as established wetlands in Michigan?

2. Do aquatic communities in created wetlands become more similar to those of established wetlands across space and time?

Background	Methods	Results	Future Directions
------------	---------	---------	-------------------

Conclusions

1. Do created wetlands support aquatic communities of similar composition or value as established wetlands in Michigan?

-Yes, although both are of low to moderate conservation value

2. Do aquatic communities in created wetlands become more similar to those of established wetlands across space and time?

Age (y)

20

p = 0.07

 $R^2 = 0.47$

0.6

0.6

0.4

25

 $p = 0.10^*$

 $R^2 = 0.31$

10

•77

15 Age (y)

25

20

Background	Methods	Results	Future Directions
------------	---------	---------	-------------------

Conclusions

1. Do created wetlands support aquatic communities of similar composition or value as established wetlands in Michigan?

-Yes, although both are of low to moderate conservation value

2. Do aquatic communities in created wetlands become more similar to those of established wetlands across space and time?

Background	Methods	Results	Future Directions
------------	---------	---------	-------------------

Conclusions

1. Do created wetlands support aquatic communities of similar composition or value as established wetlands in Michigan?

-Yes, although both are of low to moderate conservation value

2. Do aquatic communities in created wetlands become more similar to those of established wetlands across space and time?

-There is a significant relationship when sites are within ~2 km of each other, but we found little evidence that age is a factor

ruture bireci	Background	Methods	Results	Future Direction
---------------	------------	---------	---------	------------------

Other Observations

Created wetlands fed by surface connections

- + Rapid biodiversification (age not a factor)
- + Drains greater area = more nutrients, chloride, oxygen

- Allows colonization by predatory fish and non-native species

Methods	Results	F
	1	ADDATE!
		Sector S
	Methods	Methods Results

Other Observations

- Homogenous communities of generalist or non-native species (i.e. 'The Homogenocene')
- No Species of Greatest Conservation Need
- Many fish-tolerant, once-common species missing (e.g. eastern newts, tiger salamanders)
- Evidence of disturbances in both groups
 - Mowing
 - Fish Stocking
 - Pesticide Use
 - Road salts

background Methods Kes	sults	uture Directions
------------------------	-------	------------------

Naturally occurring wetlands are undergoing homogenization, 1997-2015 (Price, Spyreas, Matthews. 2018. J. Ecology)

75

37.5

225

300

150

- Community Interactions
- Landscape Context
- Within-wetland Conditions

Ongoing Research

1. How can wetland design be improved to support declining herpetofauna?

Future Directions

Should soundscapes be considered in wetland design?

Acknowledgements

Mentoring and Support

- Dr. Tiffany Schriever (WMU)
- Dr. Devin Bloom (WMU)
- Dr. Steve Hamilton (MSU)
- Rachael Austin

Wetland Access and Data

- Michael Pennington (EGLE)
- Jeremie Wilson (MDOT)
- All private landowners

Field Work

- Sarah McNichol
- Dr. Tiffany Schriever
- Morgan Morin

Equipment and Funding

- Dr. Tiffany Schriever
- Dr. Devin Bloom
- Michigan Sea Grant
- WMU Graduate Research Grant

Questions?

A 10.